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ABSTRACT

Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural
selection to solve various optimization problems. This study presents a method with the
purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in
exploration ability is made by adjusting the initial population and adding a group of fixed
stations. This modification increases the diversity among the solution population, which
enables the algorithm to escape from local optimum and to converge to the global optimum
even in fewer generations. On the other hand, to enhance the exploitation ability, increasing
the number of selected parents is suggested and a corresponding crossover technique has
been presented. In the proposed technique, the number of parents to generate offspring is
variable during the process and it could be potentially more than two. The effectiveness of
the modifications in the proposed method has been verified by examining several benchmark
functions and engineering design problems.
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1. INTRODUCTION

Gradient-based methods have been commonplace among researchers for solving
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optimization problems [1-3]. These methods enable a search of the solution space near a
specific point, where gradient information of the objective function is available [4, 5]. These
algorithms are probable to provide an optimal solution if the method is well-implemented
[6]. However, the majority of these mathematical optimization techniques require the
calculation of the gradients of objective function and constraints. This might be applicable in
simple small-scale problems. Having said that, certain problems involve discontinuous
constraint functions, and therefore their gradients do not exist. Additionally, in some cases
the constraint functions could be complicated which can make the computation of their
gradients difficult [7, 8]. By and large, obtaining gradient information for the objective
function may incur significant costs, or in some instances it might be even unattainable [6].

Hence, due to the above-mentioned computational downside of the mathematical
algorithms, the meta-heuristic approach was introduced. The emergence of this approach has
enabled efficient exploration of the entire search space to discover optimal solutions [7].
Meta-heuristics are unconventional optimization approaches that are applicable without the
need for gradient information. Furthermore, they operate without the need for an explicit
relationship between the objective function and constraints. Fundamentally, meta-heuristic
algorithms are strategies inspired by natural, social, biological, or physical principles that
have found many applications in various domains like engineering, economics, mathematics,
and other areas of science [8]. Most meta-heuristic algorithms imitate the intelligence
exhibited by natural phenomena in order to direct the search process. The underlying
premise of all meta-heuristic strategies is to approach the optimal answer as closely as
feasible, rather than achieving the exact ultimate solution. Nevertheless, the procedure does
not ensure that the solution produced at the end is the optimal solution [9]. In recent years,
this feature has spurred numerous scholars to devise novel algorithms or enhance existing
methods [10-14].

Evolutionary algorithms represent a new category of meta-heuristic techniques. One of
the most successful methods among these evolutionary algorithms is Genetic Algorithm
(GA), originally developed by Holland [15] and later revised by De Jong [16] and Goldberg
[17]. Due to its characteristics, this approach has been proven more effective than previous
algorithms in solving various optimization problems [18]. GA operates simultaneously with
a population of design points. Therefore, it leads to a more diverse and easier exploration of
design space. Moreover, mutation, selection, and crossover parts are employed by GA to
explore the solution space. These are randomized operators, used instead of deterministic
operators. It is important to note that with a few adjustments, GA can deal with more various
optimization problems [19-22]. As it appears, the significant attraction toward genetic
algorithms or other meta-heuristic algorithms, originates from their efficacy in the complex
problems that are challenging for conventional methods. In this regard, Gandomi and Alavi
[23] employed a multi-gene genetic programming (MGGP) approach to address various
engineering problems in material, structural, geotechnical, and earthquake engineering. In
another study, Gandomi, Alavi [24] utilized gene expression programming (GEP) to predict
the shear strength of slender reinforced concrete (RC) beams. Yazdani, Khatibinia [25]
suggested a modified discrete gravitational search algorithm for probabilistic performance-
based optimization design of complex structures subjected to earthquake. Degertekin, Tutar
[26] applied school-based optimization for performance-based optimum seismic design of
steel frames. Rao and Pawar [27] utilized the Rao algorithms for the optimum design of
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mechanical system components. Hassan, Kamel [28] made modifications to the second Rao
algorithm for solving the optimal power flow problem. Kaveh and Zaerreza [29] enhanced
meta-heuristic algorithms for optimization of the structures with deterministic and
probabilistic constraints. Recently, Kaveh has reviewed 25 meta- heuristic algorithms [30].

However, since most engineering problems involve optimization within complicated
constraints, simple genetic algorithms in many cases are not able to produce successful
applications. Nevertheless, their performance can be potentially enhanced. This is possible
by using tailored approaches, which is a topic of current debate. In this regard recently,
Zheng, Zhong [31] and Sun, Shen [32] employed reinforced hybrid GA. Chowdhury and
Hovda [33] and Ishaque, Johar [34] applied fuzzy logic in combination with GA.

This research aims to introduce a new method based on GA, to avoid being stuck in local
optima by increasing exploration ability, and to increase the efficiency by introducing a new
version of crossover. The former is provided by adding a group of fixed points or stations to
the population of design variables. Moreover, to exploit the population more efficiently,
multi-parent selection is employed. An effective crossover approach is implemented to form
a multi-parent combination.

2. GENETIC ALGORITHM

Genetic algorithm is a meta-heuristic algorithm that operates based on the theory of natural
selection. Genetic algorithm consists of five main stages: initialization, fitness evaluation,
parent selection which is performed based on a defined fitness function, crossover which
combines parents’ genes to produce offspring, and mutation which is designed to make
random changes in some individuals. In the following, the steps of GA, as well as how they
are applied in the proposed algorithm are explained briefly.

2.1 Initialization

In the first step, a set of individuals are needed to start the algorithm. These individuals are
randomly generated to form the first generation, which is named the initial population. Each
member of the population is considered a possible solution.

2.2 Fitness evaluation

The fitness of an individual is evaluated by a fitness function. The function determines how
close an individual is to the solution. The individuals with high fitness are selected as
parents to form the next generations. Therefore, applying an appropriate fitness function is
important in proper parent selection.

In this study, the fitness function assigns a larger value to individuals with the lower
objective function, as it is for minimization problems. As the objective function value
increases, the assigned fitness decreases uniformly until the individual with the highest
objective function value receives the lowest fitness. This uniform fitness function makes the
selection of parents not dependent on the value of the objective function, i.e. just the orders
matter not the values. This causes the probability of selection to decrease or increase within
equal intervals.
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2.3 Selection

In this stage, a number of individuals are selected as parents. Selection is performed based
on the fitness function. Different types of parent selections are available be used in genetic
algorithm. Roulette Wheel Selection, Tournament Selection, Rank Selection, etc. are some
of the common selection techniques.

Roulette Wheel Selection is the employed method for parent selection in this study. In
this method, the entire population is examined and individuals with higher fitness are
selected as parents with greater opportunity.

2.4 Crossover

Crossover is a technique that decides how parents are combined to produce offspring. In
fact, crossover determines the percentage of each parent’s contribution to generate new
children. Based on the application, different types of crossover techniques could be
implemented. In this study, a new crossover technique has proposed based on Whole
Arithmetic crossover.

Whole Arithmetic crossover is a method in which every child is made of a linear
combination of the parents’ genes. In fact, offspring inherit a specific percentage of genes
from each parent, as follows:

1)
CHZ - (1 - (X).X Pl + a.X PZ
where Py and P are parents, 1 denotes a d-dimensional vector with unit elements, and a
contains d components of random numbers(d represents the dimension of the problem)..
These components could be constant or change randomly to induce more diversity. The
operator “X” denotes the element-by-element multiplication.

2.5 Mutation

After the production of each generation, a small number of offspring are mutated to maintain
the diversity of solutions. In this study, the number and position of the mutant offspring are
randomly selected. Then, the selected individuals are added a specific normally distributed
random value.

3. PROPOSED METHO

In this paper, an effective method is presented to modify the genetic algorithm by increasing
the exploration ability. The method is based on adding some fixed individuals in specific
regions in the search space. On the other hand, a multi-parent selection approach is adopted
to exploit individuals effectively. The number of selected parents ranges randomly between
1 and 5 in each step. Eiben et al. [34] demonstrated that selecting more than two parents,
depending on the employed crossover method, can reduce the number of required
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generations.
In Section 3.1, a variable multi-parent compatible crossover is defined, and Section 3.2
presents a technique to enhance exploration ability by adding fixed station groups.

3.1 Variable multi-parent crossover

The proposed method introduces a multi-parent compatible crossover technique based on
Whole Arithmetic crossover. As previously mentioned, the number of parents is randomly
selected between 1 and 5. At each step, the number of produced children matches the
number of selected parents. A random vector a;, including d random numbers, determines
the inheritance percentage of each parent to make every child. Then, the set of all random
vectors a = [a1, @y, ..., an] i circularly shifted to create the subsequent offspring differently.
Fig. 1 illustrates the variation in a after the creation of each child.

CH; = (;.XP; + 0. X Py, + L+ 0, _1.X Py_; + 0. X Pp). /A
CH2 = (an.x Pl + (xl.X PZ + L + O(n_z.X Pn_1 + (Xn_lpn)./)t (2)

CHn = ((XZX Pl + (X3.X P2 + L + an.X Pn—l + (Xl.X Pl’l)/)"

In the above equation, n is the number of parents in every selection step, and the operator
“/” denotes the element-by-element division. The vector A is introduced to control the
summation of genes’ percentage and is obtained by:

n
A=) o @)
k=1

As it could be observed from Eg. (2), the number of parents n does not have to be
necessarily 2 and could possess any arbitrary value.

o %, )
(12 (ll (l3
(13 (12 »
a :: : ®

t‘ [ :> 3 K X
[ [3 u'n—l
g ¢ a

n-1 n
an a”,l (ll

Figure 1. The variation of a and its circular shift

3.2 Fixed station groups

One of the challenges in Genetic Algorithm or other optimization methods is that it might
converge to local optima instead of the global optimum solution. To address this problem,
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the proposed method presents an effective approach by increasing exploration ability. In this
method, some fixed individuals are added to the population. The location of fixed stations is
determined such that it could cover all the search space constantly. This ensures that the
algorithm does not focus on a specific region.

In the proposed approach, first, the center of each variable range is obtained. The
associated point, located at the center of search space, is denoted by Xc. This is the first
fixed station. Then, other fixed stations are selected at a specific distance from Xc. Thus, the
set of all fixed stations is obtained as follows:

1
XC = E (Xmax + Xmin)
T . . .
X}( = [xlc,ch,K,X(i_l)C,xl'C - S(k)ri,X(i+1)C,K,xdc] k= 1:FSG;I. =1: d;] =1 (4)
T . . .
XF = [x10, %20, K, X -1y Xie + SUT, Xe1ye, Ko xae] k= 1:FSGi=1:d;j=d +i

where X;* denotes jth point in the kth group of fixed stations and FSG is the number of fixed
station groups. Accordingly, there is a total of 2(FSG)d+1 fixed stations. Xmax and Xmin are
the vectors including upper and lower bounds of all variables, respectively. The scalar r; is
the ith component of the vector r

1
r= Z (Xmax - Xmin) (5)

and the value S(k)€[0,1] is proportional to the distance of the kth group of fixed stations from
the center point Xc. S(K) is defined as

S(k) k = 1:FSG (6)

=S0%se

The constant So is associated with the distance of the furthest group of fixed stations from
the center point Xc. For instance, for a two-dimensional case (d=2), if the number of fixed
station groups is 3 (FSG=3), and So is set to 0.75, then 13 stations are obtained from Eq. (4).
These stations are illustrated in Fig. 2. As observed in the figure, the third (furthest) group of
stations are specified by So. Then its distance from Xc is equally divided to locate other
groups of fixed stations. These 13 stations relatively cover the search space. Inaddition,
since they are among the potential parents forever (of course with their weights), they
decrease the probability of ignoring a region. This results in much smaller probability for
local traps.
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Figure 2. Distribution of fixed stations in search space for d=2, FSG=3, and S0=0.75
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Figure 3. The population after three generations (a) at presence of fixed station groups (b)
without fixed station groups

The presence of fixed stations causes the search space to be divided into several
subspaces. The algorithm considers all these sections to generate the individuals. As a result,
the population could often be concentrated more quickly in a subspace in which the
optimum point is located. Just to clarify, an illustrative example of such a performance is
displayed in Fig. 3. The figure indicates the population after three generations for a two-
dimensional function in the presence of fixed stations and without them. As shown in the
figure, fixed individuals have caused the population to concentrate around the optimum
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within just three generations. While without them, the algorithm has stuck in the local
minimum.

4. RESULTS

To evaluate the effectiveness of the proposed method, several diverse numerical examples
sourced from the literature have been analyzed. These examples include a set of 13
benchmark functions. Additionally, the efficiency of the proposed method has been
validated through the examination of 3 distinct engineering constrained optimization
problems, taken from previous studies.

4.1 Benchmark problems

In this section, the optimization process is conducted for 13 benchmark functions extracted
from Ref. [36]. The specifications of these functions, including their mathematical formula,
variable ranges, and respective global minimum values are presented in Table 1.
Additionally, visual representations of bivariate functions and their corresponding contour
lines are illustrated in Figs. 4-12.

The results of each function are detailed in Tables 2-14. These tables present a
comparison between the proposed modified GA (mGA) and GA. The tables compare the
number of generations needed to converge to the solution.

Additionally, the impact of the population size of each generation and the number of
fixed station groups has been examined. In each function, the results for population sizes of
10, 20, 50, and 100 are compared in the rows of tables. The columns demonstrate the results
for different values of fixed station groups. FSG = 0 is considered to assess the effect of the
variable multi-parent selection and multi-crossover technique. In other columns, the number
of generations required for FSG =1, 5, and 10 are listed. All data in the tables are the mean
values of 10 independent runs.

Analysis of the results demonstrates a substantial enhancement in the algorithm by
employing multiple parents alongside the presented crossover method. Especially when the
population size per generation is small, this technique leads to faster convergence to the
solution compared to GA. In fact, employing the variable multi-parent crossover technique
involving more than two parents, enables reaching the global minimum even with a notably
reduced population size. This is shown in illustrative figures and tables.

As shown in the tables, adding fixed stations, which improves the exploration ability,
could even facilitate reaching the global minimum in fewer generations. In fact, the
inclusion of fixed stations prevents being stuck in local minima and enhances the efficiency
of reaching solution. The optimal number of fixed station groups is observed typically
between 1 and 5, as indicated by the analysis results.
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Tablel. Benchmark problems
Function name Range Function Global
minimum
. . 1 1
Aluffi-Pentiny Xe€[ - 10, 10]? oo (=7 xf — > x} TR X3 -0.352386
2 ) , 3 4 7
Bohachevsky 1 X€[ — 100, 100] foost X)=xT + 225 — Ecos(3nx1)-mcos(4nx2) 1o 0.0
By ) , 3 3
Bohachevsky 2 Xe[ - 50, 50] foost X)=x7 +2x3 -1—Ocos(3nx1) cos(4mx,) +E 0.0
1
Camel Xe[—5,5)° £ (X)=4x} — 2.1x} + gx? + XX, — 403 + 4x3 -1.0316
1
Cb3 Xe[ -5, 51 £ (X)=2x7 — 1.05x3 + gx? + X1, + X3 0.0
. . n 1 n
Cosine mixture n=4,Xe[ —1,1]" fcost(X)=Z:x,2 ~ 10 cos(5mx;) -0.4
i=1 i=1
DeJoung Xe[ - 5.12, 5.127 £0 X)=x3 + x5 + x3 0
n
Exponential n=248Xe[—1,11" f 4 X)= —exp (—0.5 Zx,z> -1
i=1
frost X)=[1 + (x; + x5 + 1)3(19 — 14x; +3x7
Goldstein and price  Xeg[ — 2, 2]2 —14x, + 6x1x, + 3x3)] X[30 + (2x; — 3x,)%x 3.0
(18 — 32x; + 12x} + 48x, — 36x,x, +27x3)]
| 2 2
X
Griewank - 2 =] +— 2—1_[ (—’) 0.0
Xe€[ — 100, 100] o (X)=1 00 4 X; g cos 7
2
Rastrigin Xe[—-1,17" fX)= Z(x,z — cos(18x,)) 2.0
i=1
n-1
Rosenbrock n=2,Xe—30,30]" £, (X)= ) 100(x;41 — x7)*+ (x; — 1)? 0.0
i=1
Bukin “I5sx =5 o0 (X)=100_|[x, — 0.01x2] + 0.01]x; + 10] 0.0

—3Sx2S3
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Figure 4. The visual of "Aluffi-Pentiny"
and its contour lines

Figure 6. The visual of "Bohachevsky 2"
and its contour lines

Figure 8. The visual of " Exponential " and
its contour lines
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Figure 5. The visual of "Bohachevsky 1"
and its contour lines
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Figure 7. The visual of "Cosine mixture"
and its contour lines
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Figure 9. The visual of "Goldstein and
price" and its contour lines
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B
g
S Table 2. The number of generations in Aluffi-Pentiny Table 3. The number of generations in Bohachevsky 1
2 J
[a]
— P h
Pop. A Proposed method P_Op- A roposed method
size FSG=0 FSG=1 FSG=5 FSG=10 Stz FSG=0 FSG=1 FSG=5 FSG=10
10 233 80.4 71 44 .4 61.8 10 >50000 34.4 10.2 12.3 17.3
20 117 51 44 40 94 20 125 27.3 11.4 13.1 24.5
50 20 36.8 31 28 30.9 50 19 18.3 11.1 10.7 12.9
100 16 15.8 135 14.6 21 100 16 127 6.4 10.1 115
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Table 4. The number of generations in Bohachevsky 2

Pop. Proposed method

size FSG=0 FSG=1 FSG=5 FSG=10
10 >50000 274 3 198 23
20 55 257 93 132 151
50 17 192 84 144 14
100 15 119 53 9.3 9.2

Table 6. The number of generations in Cb3

Pop. Proposed method

. GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 438 19.3 8.1 15.7 19
20 17 13 6.8 17.6 13.1
50 12 9.4 6.3 7.6 7.6

100 10 7.5 6.4 7 6.3

Table 8. The number of generations in DeJoung

Pop. Proposed method

- GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 307 15.9 8.3 12.6 19.1
20 207 14.3 53 10.1 18.3
50 17 12 5.7 8.4 6.8

100 14 8.9 7.1 7.2 7.7

Table 5. The number of generations in Camel

Pop. Proposed method

. GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 106 120.5 1638 1621  505.1
20 32 62.3 44.6 87.1 112.8
50 13 39.7 12.1 20.7 32.2

100 12 11.3 9.8 10.5 15

Table 7. The number of generations in Cosine mixture

Pop. Proposed method

. GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 430 17.7 9.6 219 28.5
20 297 18.8 114 12.2 26
50 43 155 7.3 9 10.9

100 38 12.3 7.7 7.2 7.7

Table 9. The number of generations in Exponential

Pop. Proposed method

- GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 140 12.5 8.7 16.3 18.7

20 12 10.8 7 10.5 11.6
50 9 8.6 5.7 5.2 7.9
100 7 6.9 6.5 5.1 5.5
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Table10. The number of generations in Goldstein

Proposed method

Pop.

size FSG=0 FSG=1 FSG=5 FSG=10
10 2047 94 108 70 1

20 995 254 89 33 1

50 17 20 71 20 1

100 12 10 20 14 1

Tablel2. The number of generations in Rastrigin

Pop. Proposed method

- GA
size

FSG=0 FSG=1 FSG=5 FSG=10

10 1723 18 53 19.6 20.7
20 313 13.9 4.3 11.9 17.9
50 17 10.2 6.6 8.1 10.9

100 16 9.5 6.1 7.9 8.8

201

Tablell. The number of generations in Griewank

Proposed method

G CA

FSG=0 FSG=l FSG=5 FSG=10
10 203 30 7 1 26
20 90 22 49 111 149
50 29 16 5 1 115
100 13 127 71 74 102

Table13. The number of generations in Rosenbrock

Pop.

Proposed method

size GA

FSG=0 FSG=1 FSG=5 FSG=10
10 >50000 >50000 25408 8706 6203
20 >50000 >50000 13528 10458 3272
50 9139 12307 9951 2275 3509
100 2475 8152 7952 1884  846s

Tablel4. The number of generations in Bukin

Proposed method

e GA
FSG=0 FSG=1 FSG=5 FSG=10
10 82 75 45 165 745
20 78 71 57 73 211
50 62 203 55 149 371
100 59 102 33 82 221

4.2 Engineering design problems

Three engineering design problems in the category of constrained optimization are examined
to demonstrate the performance of the proposed algorithm. To manage constraints, a penalty

method is adopted in these examples.
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4.2.1 A tension/compression spring design problem

The objective is to minimize the weight of a tension/compression spring shown in Fig.13
(described in [37] and [38]) with constraints on shear stress, surge frequency, and deflection.
The design variables include the mean coil diameter (D=x1), the wire diameter (d=x.), and
the number of active coils (x3). The problem can be defined by the following cost function

fcost (X) :(X3 + 2) X2 x% (7)

- \ﬁ

Figue 13. The tension/compression spring problem

The constraints are expressed as
x% X3

X)=1-—223 <
& (X) 71785+

4x§ — XX 1
+ —1<0
12566 (x, x; —x}) 5108 x7
140.45 x, (8)

X)=1—-————<0
g,(X) 2y S

g,(X) =

X1 tXx,
1.5

g,(X)= —1<00

and the boundaries of design variables are: 0.05 <x; <2, 0.25<x><1.3,and 2 <x3 <15.
Table 15 compares the results obtained from the proposed method with GA. These results
clearly show that by selecting multiple parents and applying multi-crossover, the proposed
method converges to the solution within fewer iterations. As shown, by adding fixed
stations, the number of required generations is significantly reduced compared to GA. It can
be mentioned that the optimal number of fixed station groups in this problem is equal to 1.
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Fig 14 compares the number of iterations required to converge to the global minimum,
between the proposed method and GA. This graph is plotted for FSG = 1, which is the
optimal value. This figure shows that the presence of fixed stations, which increases the
exploration ability, causes the first generation to be closer to the global minimum, and
consequently the number of required generations for the rest is reduced.

Table15. The number of generations in the spring design problem
Proposed method

Pop.

size GA FSG=0 _ FSG=1 FSG=5 FSG=10
10 5750 10649 4838 753 6973

20 4624 23482 2153 1033 2504

50 3618 20442 1550 2536 2874
100 2485 1587 1383 2006  2154.4

1.05 T T T T T T T

GA
Proposed method |+

1.045 |

1.04

1.035

1.03

Best Cost

1.025

1.02

1.015

1.01 Il 1 1 Il 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

Figure 14. The comparison of required number of generations in spring design problem (FSG
= ]_)
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4.2.2 A pressure vessel design problem

The cylindrical vessel shown in Fig. 15 is capped at both ends by hemispherical heads [39].
The objective in this problem is to minimize the total cost of the welding, material, and
forming. This function is formulated by:

£05t(X) = 0.6224 x;x3x4 + 1.7781 x,x3 + 3.1661 x7x, + 19.84 x3x; ©)

where x; represents the shell thickness (Ts), X2 signifies the head thickness (Th), Xs denotes
the inner radius (R), and x4 indicates the length of the cylindrical section excluding the head
(L). Ts and Th are integer multiples of 0.0625 inches. These are the available thickness of
rolled steel plates. R and L, on the other hand, are continuous variables. Constraints of the
problem are:

g,(X)= —x, +0.0193 x3<0
g (X) =-x, +0.00954 x5 < 0

4
g,(X) = — - 3oed + 1296000 <0 (10)

g,(X) =x4 —240<00

and variable bounds are 0 < x1 <99, 0 <x2 <99, 10 < x3 <200, and 10 < x4 < 200.

Ts Th

22

7

Figue 15. The pressure vessel design problem

Table 16 indicates the number of iterations required for convergence to the global
minimum in the proposed method and GA. As it can be seen in the table, by using multiple
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parents, fewer generations are needed to reach the solution. Furthermore, adding fixed
stations to the population increases the efficiency of the algorithm significantly. The best
convergence occurs at FSG=1. In Fig 16, the graph of the number of iterations required to
converge to the solution is presented for FSG=1. As displayed in the figure, in this specific
case GA is trapped in a local minimum. While in the proposed method, in the first
generations, there are closer generated points to the global minimum due to the existence of
fixed stations. This results in convergence with fewer iterations and escaping local traps.

Tablel16. The number of generations in the spring design problem

Pop. GA Proposed method
size FSG=0 FSG=1 FSG=5 FSG=10
10 10440 6839 3051 >20000 >20000
20 5380 5037 782 1943 5827
50 2036 17415 566 739 1294
100 1038 865 543 609 616
6 x 10~ T T T T T T T
GA
Proposed method
5 | -
4 | -
z
ML 1
g
=]
2 [ -
1 L |
0 1 L

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

Figure 16. The comparison of required number of generations in spring design problem (FSG
= ]_)
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4.2.3 A cantilever beam

This problem aims to minimize the weight of a cantilever beam composed of five hollow
square blocks. The first block has rigid support, and a vertical load is applied on the fifth
block, as indicated in Fig. 17. The design variables X1, X2, X3, X4, X5 determine the dimensions
of the cross-section of the cubes, respectively. The cost function of this problem is defined
as

f(‘:ost(X):OO624( X1 + Xy + X3 + Xa + XS) (11)

The constraint is:

(X) 61+27+19+7+1 1<0 (12)
g ST T T3 T 1>

Figue 17. The cantilever beam problem

Table 17 compares the number of iterations required to reach the global optimum
between GA and the proposed method. According to the table, the proposed method
achieves convergence with fewer iterations, especially at FSG=1 which results in the
best convergence. This observation is further illustrated in Fig. 18, which shows the
number of required iterations for convergence at FSG=1. The efficiency of the proposed
method is clearly indicated in this figure.
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Tablel7. The number of generations in the cantilever beam problem

Pop. GA Proposed method

size FSG=0 FSG=1 FSG=5 FSG=10
10 36937 29873 25241 26946 33308
20 18804 14507 10373 17420 21304
50 5396 4562 3677 4458 5927
100 3452 1995 1110 1916 2108

3.5 T T T T T T T T T
GA
Proposed method
3 4
o 251 .
w
=]
@)
b7
]
=)
2 - -
1.5 \ .

l 1 1 L 1 | 1 1 | 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

Figure 18. The comparison of required number of generations in the cantilever beam problem
(FSG=1)

5. CONCLUSIONS

In this paper, a method is presented to improve the genetic algorithm by increasing the
exploration ability. Adding fixed stations to the population ensures more coverage of the
entire search space. This technique helps to escape from local minima, especially in multi-
modal functions. Furthermore, due to thoroughly exploring the entire search space, it
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efficiently decreases the required iterations to reach the global minimum. This occurs by
producing the first generations closer to the solution. In addition, the proposed method
improves exploitation ability by increasing the number of selected parents and generating
offspring based on a variable multi-parent compatible crossover. This approach decreases
the number of required generations to reach the global minimum. The effectiveness of the
proposed method has been validated by using several benchmark functions and engineering
constrained optimization problems. Therefore, the presented method leads to solving
optimization problems more efficiently by improving genetic algorithm.
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